Мозг Фирмы

На нашем литературном портале можно бесплатно читать книгу Мозг Фирмы, Бир Стаффорд-- . Жанр: Управление, подбор персонала. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Мозг Фирмы
Название: Мозг Фирмы
Дата добавления: 16 январь 2020
Количество просмотров: 255
Читать онлайн

Мозг Фирмы читать книгу онлайн

Мозг Фирмы - читать бесплатно онлайн , автор Бир Стаффорд

Популярная монография одного из классиков кибернетического подхода, которая не одно десятилетие является настольной книгой многих системных аналитиков.

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 62 63 64 65 66 67 68 69 70 ... 117 ВПЕРЕД
Перейти на страницу:

Неопределенность, как мы видели, является функцией разнообразия. Разнообразие есть численная мера возможных состояний системы. Решение есть результат выбора одного возможного состояния из всех других. Теперь вернемся к примеру с картой. Из миллиона квадратов (на географической сетке) нам нужно выбрать один. Очевидно, что мера неопределенности, связанная с подобным "решением", начинается с миллиона и снижается до единицы. Теперь рассмотрим управленческое решение, но будем придерживаться скромной размерности задачи. Пусть у нас будет восемь изделий и восемь станков. Каждое изделие может быть изготовлено на любом станке. Тогда "решение" можно представить как определение того, какое из восьми изделий и на каком станке должно производиться в настоящее время. Это будет двумерная задача с разнообразием, равным восьми по каждому измерению. Нетрудно видеть, что из 64 вариантов нам предстоит выбрать один. Таким образом наша проблема сводится к снижению разнообразия с 64 до 1.

Далее, можно ввести еще одно измерение. Предположим, что каждое изделие выпускается в восьми вариантах — красное, голубое, зеленое и т.д. Тогда решение, которое мы пытаемся принять, становится задачей выбора одного ответа из 8х8х8 =512 вариантов. Если бы число изделий было намного больше и намного больше была бы размерность проблемы, то число вариантов такого разнообразия стало бы астрономическим. Заметьте причину этого явления — все их численные показатели должны перемножаться. Каждого прошедшего школьный курс математики это обстоятельство сразу же наводит на мысль о возможности использования логарифмов. Если бы мы использовали логарифм разнообразия по каждому измерению, то для определения общего разнообразия -там пришлось бы просто суммировать эти цифры. Но здесь возникает небольшое препятствие: большинство читателей имело дело с логарифмами по основанию 10.

В кибернетике используются логарифмы, вычисляемые по основанию 2. Это обусловлено тем, что исходным положением для решения является выбор между "да" и "нет". Такое бинарное различие (вспомните первую часть) называется битом. Более того, четыре, вещи мы можем различать с помощью двух битов информации. Мать и отец, их сын и дочь могут быть по-разному определены: "решением", во-первых, кто из них мужчина и кто женщина, и, во-вторых, кто первого и второго поколения. Нам необходимы три бинарных решения, чтобы различить восемь состояний, четыре бита нужны для различения 16 состояний, пять битов — для различения 32 состояний и т. д. Это все, что имеется в виду под фразой "вычисление логарифма по основанию 2". При десяти бинарных решениях можно различить 1024 состояния. И если все это еще не звучит достаточно впечатляюще, то следует добавить, что эти величины растут экспоненциально. Сорок бит позволят распознать одну особь в популяции, превышающей примерно триллион (1012.)

Все, что мы теперь делали, сводится к созданию полезного арифметического метода, позволяющего рассчитывать неопределенность. Восемь вариантов, восемь изделий, изготавливаемых на восьми станках, создают 512 вариантов. Такова мера нерешенных проблем, пока не достигнуто заключение относительно того, какой вариант, какого изделия, на каком станке будет выпускаться. Теперь давайте используем наш логарифмический метод. Разнообразие из восьми вариантов по каждому измерению может быть заменено числом бит (а именно логарифмом по основанию 2), требуемых для его выражения. Для такого разнообразия ответом будет три бита (здесь 3 бита: 8/2=4; 4/2=2; 2/2=1). Общее разнообразие, вместо 8х8х8=512 вариантов теперь составит 3+ 3+ 3=9 бит. Нет нужды говорить, что оба этих разнообразия эквивалентны, поскольку 9 бит равны 29 = 512.

Смысл предложенного здесь метода в том, что мы можем создать модель предстоящего решения, основанную не на последовательности приоритетов, и что будем измерять общее разнообразие решений. Тогда любое заключение, полученное мультинодом, будет сокращать разнообразие как общую неопределенность. Более того, исключенное разнообразие будет не просто разнообразием, относящимся к вариантам, непосредственно снятым с рассмотрения, но также к исключенным из разнообразия, относящегося к другим измерениям данной проблемы, теперь признанным и не имеющим к ней отношения как следствия ранее принятого нами решения. Вспомним, что мы разыскивали город, который не только находится на определенной широте, но он и не может находиться в море, а это ограничивает поиск его широты.

Когда мультинод начинает принимать решения, что делается отсечением разнообразия в определенном логическом измерении, он неявно ускоряет уменьшение разнообразия. Возвратимся к примеру вариантов восьми изделий, выпускаемых на восьми станках, и предположим, что мы сняли четыре станка. Разнообразие тогда составит 8х8х4 = 256. Иначе, начав привыкать к нашей новой идее, предпочтительнее записать, что первоначальное разнообразие 3+ 3+ 3=9 битов теперь уменьшилось до 3+ 3+ 2=8 битов (= 256). Здесь мы подошли к важному моменту. Мы считаем, что уменьшили разнообразие на один бит. В действительности из-за многомерности нашей проблемы такая оценка будет заниженной. Исключив четыре из восьми станков, мы (фактически) сделали невозможным производство более чем двух изделий. Для изготовления шести остальных требуется четыре снятых станка. Отсюда возможное производство изделий теперь представляет разнообразие всего в один бит — как следствие нашего первого решения. Но, в свою очередь, два таких изделия могут выпускаться только восьми цветов на тех самых четырех станках, которые мы теперь исключили. Оставшиеся станки как таковые могут теперь выпускать изделия только одного цвета. Итак, хотя мы остались без четырех станков, мы можем выпускать только два вида изделий, а вопрос об их цвете вообще снимается. Тогда нам остается решить, что делать с оставшимися тремя битами информации — 23 = 8 сохранившихся вариантов.

На этом примере мы, таким образом, пытаемся изучить действенность нашей второй парадигмы при n -мерной проблеме (хотя в данном случае n < 3). Механизмы, с помощью которых реализуется его "сила парадигмы", сводятся к объединению логических переменных и размещению этих переменных в разных измерениях. Тогда, хотя мультинод может не рассматривать последовательно свои решения в приемлемом порядке их приоритетов, любое принятое им решение будет, вероятно, отражаться во всей системе и, следовательно, усекать разнообразие с огромной скоростью. Здесь уместно сделать два замечания.

Первое состоит в том, что кажущаяся ошеломляющей, неопределенность при принятии любого решения в реальной жизни с самого начала быстро уменьшается до тех пор, пока не останется очень мало вариантов выбора решений. Действительно, можно доказать математически, что разнообразие по мере принятия промежуточных решений уменьшается экспоненциально.

Второе замечание более интересно с точки зрения психологии управляющих. Отнюдь не ясно (судя по нашим наблюдениям), что управляющие, принадлежащие мультиноду, понимают силу влияния, которое оказывает кажущееся маловажным их промежуточное решение. Следовательно, они недооценивают важность достижения логической последовательности нахождения решений. Вероятно, главный выигрыш, достигаемый описанной здесь процедурой при подготовке реальных решений, состоит в том, что при неограниченной свободе действия мультинод может показать (даже в количественном выражении) влияние того, что с первого взгляда кажется второстепенным, на общую структуру окончательного решения.

Парадигма поиска и мера энтропии — вот все необходимое, что позволяет мультиноду помочь научному решению рассматриваемых проблем. Но, как свидетельствует опыт, люди нелегко понимают подробности работы такого метода на практике. По этой причине мы завершим этот раздел примером. Было бы полезным привести реальный пример использования этого метода на практике (поскольку он показал свое "могущество"), но, к несчастью, это невозможно — реальные примеры слишком сложны.

1 ... 62 63 64 65 66 67 68 69 70 ... 117 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название