Мозг Фирмы
Мозг Фирмы читать книгу онлайн
Популярная монография одного из классиков кибернетического подхода, которая не одно десятилетие является настольной книгой многих системных аналитиков.
Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала
Последнее относится к особому случаю теории управления, рассматриваемому в гл. 2. При этом на сенсорном входе и моторном выходе сохраняются афферентные и эфферентные импульсы соответственно. Сохраняется также анастомотик ретикулум, который мы не собираемся детально анализировать или подвергать управлению соответствующими для этого случая командами. Более того, его действия ясно продемонстрированы (пока что) на примере машины из дерева и меди в предыдущей главе.
Рассмотрим сенсорное устройство такой машины. У нее 10 контактов, которые собирают данные, передаваемыеим из внешнего мира, представленного колесом рулетки. В свое время мы говорили, что таких контактов может быть хоть сотня. Конечно, может быть и любое произвольное число контактов, как угодно разбросанных по сенсориуму. Машина будет по-прежнему работать. Более того, предположим, что функция преобразования, представленная отношением числа контактов, находящихся на двух медных полосах А: В в любое данное время не является очень грубой. Можно представить себе в качестве примера химическую клетку, порог срабатывания которой представлен значением рН или какой-то электрической величиной, прочитанной от преобразователя на языке Мета-1 и усиленной или подавленной цепью связи.
В таком случае связь между входом и выходом проследить невозможно. Часть ее (периферийная) по характеру дискретная - поток двоичных импульсов поступает (и распространяется) в высшей степени запутанную сеть линий. Проследить все это достаточно трудно и фактически невозможно, если сеть будет непрерывно изменяться — линии могут атрофироваться или непостижимым образом включаться в работу или выключаться. Однако если их достаточно много, машина продолжит работу. Хуже того, внутриклеточная связь будет прослеживаться только на молекулярном уровне. Практически мы будем иметь дело со статистическим эффектом массы. Наиболее близкое описательное название, которое обозреватель может присвоить этой внутренней части нейрона, могло бы быть "аналоговое устройство", поскольку основной двоичный характер системы потерян. Как бы там ни было, в конечном счете вся система связи и взаимодействие в ней могли бы служить отличным примером анастомотик ретикулум.
Как представляется, реальный живой нейрон выглядит весьма на это похожим. Более того, наше его описание достаточно хорошо соответствует и управляющему. При рассмотрении сути этого замечания опасайтесь путаницы в оценке различий в их разрешающей способности (в оптическом смысле). Мы рассматриваем нейрон (как естественный, так и искусственный) и управляющего как простой элемент решения в сети нейронов (мозг) или как человека (в обществе управляющих). Тот факт, что в мозгу управляющего содержится 10 млд. нейронов, не имеет значения для нашего сравнения. Тем не менее это интересное замечание, когда мы приступаем также к рассмотрению иерархии команд. Во всем этом наблюдается удивительная гомогенность, а собственный язык управляющего, очевидно, является метаязыком n-го порядка по отношению к машинному языку его собственных нейронов.
Кстати, если сенсориум изобретенной нами машины может быть представлен большим, возможно неизвестным, числом входов вместо первичных десяти, алгедоническая цепь сможет успешно работать и на менее точной основе. Мы говорили, что срабатывание цепи алгедонической обратной связи вызовет движение деревянного бруса, при котором контакт, один из десяти, переместится с пластины A на пластину В. Однако если число произвольно разбросанных контактов весьма велико, то это правило становится бессмысленным. Во всяком случае, нет никаких оснований, в силу которых алгедоническое движение должно быть дискретным, осуществляемым небольшими скачками. Давайте представим этот обусловленный процесс как своеобразное давление, под действием которого очень незначительно перемещается деревянный брус, при этом плавно исправляя ошибки. Теперь мы знаем, что алгедоническая функция сама определена метаязыковым решением, чем-то таким, что ценится высшим руководством. Какой бы ни была система, определяющая сигнал, алгедоническая цепь различает не только верен ли выданный зажегшейся лампочкой сигнал, но и насколько он верен или неверен. Давайте зафиксируем этот результат и используем его применительно к силе, двигающей деревянный брус. Обычно его перемещение невелико: вероятность А:В может измениться с 50:50 на 51:49. Если "неверный" ответ внезапно (металингвистически) становится опасным, давление будет продолжаться; отношение 50:50 может сразу же измениться на 99:1 (однако не на 100:0, поскольку это исключает возможность изменения соотношений). И вновь совершенно ясной становится аналогия действий управляющего и движения, с которым связано решение о поощрении или наказании.
Прежде чем переходить к рассмотрению действующих ступеней иерархий, уместно сделать общее замечание. Нас всегда учили представлять командные сети как специально созданные, располагающие узловыми пунктами, действующими в качестве переключателей, зависящими от обратной связи в инженерном смысле (см. гл. 2). Однако, во-первых, жизнеспособные системы фактически демонстрируют наличие в них скорее анастомотик ретикулум, чем надлежащим образом разработанной сети, элементы которой формируются и переформировываются самостоятельно в соответствующие структуры. Во-вторых, элементы, являющиеся узловыми пунктами, управляются меняющимися функциями преобразования; они лучше всего описываются как непрерывно модифицирующиеся условные вероятности, а не неизменные операторы, которые в представлении стандартной теории управления являются дифференциальными уравнениями. В-третьих, цепи обратной связи не просто устройства коррекции ошибок, которые приводят выходной результат в соответствие с "правильным" значением. Они являются алгедоническими цепями, идущими от систем высшего порядка, влияющими на первые два вида изменений. Но и в такой роли согласно стандартной теории управления главной функцией этих систем остается обратная связь.
Из того, что было досих пор изложено, вытекает, что нейрофизиологическую и управляющую системы (если взять две жизнеспособные системы, которые, как оказалось, имеют много общего) легче всего понять, представляя именно с учетом сказанного, аих основные элементы — нейрон и управляющего — как работающих в соответствии с моделью, представленной в ее самой простой форме деревянно-медной машины. Для облегчения дальнейших ссылок надо ее назвать, и я выбрал в качестве имени алгедонод. Я знаю, насколько утомительно продолжать вводить новые для читателя названия, в особенности (как в данном случае) если я вынужден самих изобретать. Однако словарь, представляемый управляющим, поразительно ограничен. А здесь вводится понятие, определенное с той степенью глубины, с которой мне удалось это сделать. Решающий элемент в системе управления состоит в принципе из входящей (или афферентной) и выходной (или эфферентной) подсистемы информации, соединенной с помощью анастомотик ретикулум. Все эти три части системы управления были достаточно подробно определены ранее. Этот решающий элемент является узлом в сети решающих элементов, образующих систему управления. Но этот узел как решающий элемент обусловлен (в смысле путей его изучения) метасистемой, использующей эвристический метод поощрения и наказания, который мы назвали алгедоническим. Все это вместе является алгедонодом. Наша деревянно-медная машина — грубый его пример, но и нейрон мозга, и отдельный руководитель в числе членов правления — тоже алгедоноды.
Нашим следующим шагом будет попытка распространить принцип машины, представленной на рис. 10, на всю командную иерархию и посмотреть, как подобная машина работает. Пусть следующий вариант деревянно-медной машины состоит из 32 элементов, каждый из которых сам является алгедонодом. Если наши ряды из восьми алгедонодов представить так, как показано на рис. 11, то получится устройство, способное принимать восемь двоичных решений вместо одного.