Экономика символического обмена

На нашем литературном портале можно бесплатно читать книгу Экономика символического обмена, Долгин Александр Борисович-- . Жанр: Экономика. Онлайн библиотека дает возможность прочитать весь текст и даже без регистрации и СМС подтверждения на нашем литературном портале bazaknig.info.
Экономика символического обмена
Название: Экономика символического обмена
Дата добавления: 16 январь 2020
Количество просмотров: 405
Читать онлайн

Экономика символического обмена читать книгу онлайн

Экономика символического обмена - читать бесплатно онлайн , автор Долгин Александр Борисович

Внимание! Книга может содержать контент только для совершеннолетних. Для несовершеннолетних чтение данного контента СТРОГО ЗАПРЕЩЕНО! Если в книге присутствует наличие пропаганды ЛГБТ и другого, запрещенного контента - просьба написать на почту [email protected] для удаления материала

1 ... 42 43 44 45 46 47 48 49 50 ... 116 ВПЕРЕД
Перейти на страницу:

Для улучшения работы системы используются различные модификации ранее описанных методов [333]. В частности, для преодоления дефицита оценок конкретного пользователя и подбора ему подходящих рекомендателей прибегают к «голосованию по умолчанию» (эта схема подходит в том случае, если все потребляют одно и то же и сходным образом оценивают). Эмпирически установлено, что точность предсказания растет, если присваивать неоцененным товарам некую гипотетическую оценку. Чтобы получить ее, предложено вычислять сходство не между пользователями, а между товарами [334].

Поскольку вкусы людей из группы рекомендателей, подобранных компьютерной программой для данного клиента, хотя и близки между собой, но все же не идентичны, нужно каким-то образом резюмировать их общую оценку. В примитивном варианте она вычисляется как простое среднее. В то же время ясно, что чем более сходны во вкусах клиент и кто-то из его рекомендателей, тем весомей должен быть вклад оценки данного рекомендателя в предсказание, обобщающее мнение группы. Однако и в этом варианте учтено не все: в частности, пользователи по-разному воспринимают шкалу оценок. Эта проблема снимается, если абсолютные значения оценок корректируются с учетом систематического сдвига от их среднего значения для соответствующего рекомендателя (так нивелируется общая позитивная или негативная установка абонента).

Наряду с клиент-клиентскими системами применяется коллаборативная фильтрация второго типа – модельного [335]. В этой схеме с помощью некоего индекса сходства пользователей объединяют в кластеры. Покупки и оценки, данные потребителями из одного сегмента, используются для вычисления рекомендаций. По утверждению Г. Линдена и его соавторов, кластерные модели легче масштабируются (т. е. они лучше приспособлены к работе с крупными базами данных) в сравнении с поклиентской коллаборативной фильтрацией, так как сверяют профиль пользователя с относительно небольшим количеством сегментов, а не с целой пользовательской базой [336]. Сложный и дорогой кластерный подсчет ведется в оффлайновом режиме, что разгружает систему. Но качество рекомендаций при этом снижается, и вот почему. Кластерная модель группирует пользователей в сегмент, сравнивает конкретного пользователя с этим сегментом и выдает всем членам сегмента общие рекомендации. Так как пользователи, объединенные в кластер, не обладают идеальным сходством, рекомендации тоже не идеальны. Их качество можно повысить, разбивая пользователей на высокооднородные подгруппы, но тогда их будет много, и анализ связи пользователь-сегмент обойдется так же дорого, как и поиск сходных потребителей методом субъект-субъектной (поклиентской) коллаборативной фильтрации [337].

Работа по совершенствованию коллаборативной фильтрации полным ходом ведется во всем мире. Известны попытки внедрения статистической схемы [338], а также более сложных вероятностных методов [339]. Объединение анамнестического и модельного принципов дает лучшие результаты, чем каждый из них в отдельности.

2.7.3.1. Проблемы и недостатки

Коллаборативные рекомендации по целому ряду параметров превосходят контентные. В частности, они могут работать с любыми продуктами, даже c теми, которые вообще пока не известны данному потребителю. Технология может использоваться и для экспертизы самого эксперта [340]. (Если профессиональный критик включается в орбиту рекомендательного сервиса, важно знать, в какой области он специализируется и сколь авторитетен.)

Главное достоинство коллаборативной фильтрации состоит в том, что рекомендации персонифицированы. При этом сервис не просто использует повседневную потребительскую активность клиентов, а стимулирует их анализировать свои поступки. Создатели рекомендательных систем для торговли по вполне понятным причинам стараются не утруждать потребителя и свести его рефлексию к минимуму. Но несомненно, что для самого покупателя осмысление выбора – полезное занятие. В частности, культурно-потребительская активность может привести к формированию сообществ по интересам, и это бесконечно позитивно [341] – при условии, что реальное (офф-лайн) знакомство людей с их «вкусовыми» соседями не будет противоречить этике и принципу невмешательства в частную жизнь [342].

Но в коллаборативных сервисах имеются и свои ограничения. К их числу относится проблема нового пользователя. Чтобы дать ему точные рекомендации, системе прежде надлежит выяснить его предпочтения. Это препятствие обходят, используя гибридный метод, совмещающий возможности контентного и коллаборативного принципов [343]. Совсем недавно появились методики построения потребительского профиля, в которых используется автоматическая обработка текстов (data-mining), анализ сетевого поведения клиента и т. д. Они позволяют учесть интересы и предпочтения пользователей, не обременяя их лишними вопросами, и тем самым насытить как их собственные профили, так и профили объектов. Эти технологии позволяют отчасти снять еще одну проблему рекомендательных систем – назойливость. Большин­ство рекомендательных сервисов предполагают пользовательскую активность: MovieLens, например, первым делом просит новичков проставить оценки двум десяткам фильмов [344].. Для точного расчета необходимы оценки большого количества уже известных продуктов. Эти сведения стараются извлечь косвенными методами [345]. Например, анализируют время, ушедшее на чтение статьи. Но косвенные данные неточны и не заменяют полностью прямых оценок пользователя. Поэтому проблема снижения навязчивости рекомендательных систем при сохранении высокого качества их работы стоит довольно остро.

Те же сложности возникают и с новым товаром: его невозможно рекомендовать до тех пор, пока он не наберет достаточного количества оценок [346].

Есть и еще одна препона – так называемая разреженность оценок. Спрос на рекомендации обычно превышает наличие оценок в системе. Люди предпочитают не давать оценки, а получать их, не вкладываться в формирование базы данных, а пользоваться ею. Отсюда, в частности, проблема «первого оценщика» и вообще «холодного старта». Как побудить человека к этому действию, ведь поначалу он не приобретает ничего взамен и может подождать, пока эти хлопоты возьмет на себя кто-то другой? [347] Хотя если судить по высочайшей спонтанной активности веблоггеров, не стоит переоценивать трудности. И все же так или иначе критическая масса пользователей необходима. Например, в рекомендательных системах по кино часть фильмов оценивается лишь малым числом зрителей, поэтому эти ленты будут рекомендоваться редко, даже если им поставили высокие баллы. В общем, если в базе данных число «экспертов» относительно мало по сравнению с количеством объектов, прогнозы будут неточны. Проблему можно частично купировать, если включить в профиль пользователя дополнительную информацию, к примеру, учитывать социально-демографические данные (это так называемая демографическая фильтрация). Так, рекомендательные системы для ресторанов предлагается пополнять сведениями о возрасте, месте проживания, образовании и работе [348].

Часть проблем коллаборативной фильтрации носит сугубо технический характер и связана со сложностями вычислений при работе с большими базами данных. Как указывают разработчики конкурирующих друг с другом систем, «почти все современные алгоритмы коллаборативной фильтрации были разработаны на небольших базах данных. Например, MovieLens работает с 35000 клиентов и 3000 товаров, а EachMovie работает с базой из 4000 пользователей и 1600 товаров» [349]. Дорогостоящие вычисления целесообразно выполнять только в офф-лайне, но традиционная поклиентсткая корпоративная фильтрация в таком режиме практически не функционирует, а делать все вычисления в режиме реального времени трудно. Это возможно только если количество измерений невелико, что уменьшает качество рекомендаций. В противном случае обслуживание рекомендательной системы оказывается неоправданно затратным.

1 ... 42 43 44 45 46 47 48 49 50 ... 116 ВПЕРЕД
Перейти на страницу:
Комментариев (0)
название